मराठी

∫ ( 2 X + 3 ) √ X 2 + 4 X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int \left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]
\[\text{    Also }, 2x + 3 = \lambda\frac{d}{dx}\left( x^2 + 4x + 3 \right) + \mu\]
\[ \Rightarrow 2x + 3 = \lambda\left( 2x + 4 \right) + \mu\]
\[ \Rightarrow 2x + 3 = \left( 2\lambda \right)x + 4\lambda + \mu\]
\[\text{Equating coefficient of like terms} . \]
\[2\lambda = 2 \]
\[ \Rightarrow \lambda = 1\]
\[\text{ And }\]
\[4\lambda + \mu = 3\]
\[ \Rightarrow 4 + \mu = 3\]
\[ \Rightarrow \mu = - 1\]
\[ \therefore I = \int \left( 2x + 4 - 1 \right) \sqrt{x^2 + 4x + 3}\text{  dx }\]
\[ = \int \left( 2x + 4 \right) \sqrt{x^2 + 4x + 3}dx - \int\sqrt{x^2 + 4x + 3} \text{  dx }\]
\[ = \int \left( 2x + 4 \right) \sqrt{x^2 + 4x + 3} \text{  dx }- \int\sqrt{x^2 + 4x + 4 - 1} \text{  dx }\]
\[ = \int\left( 2x + 4 \right) \sqrt{x^2 + 4x + 3dx} - \int\sqrt{\left( x + 2 \right)^2 - 1^2} \text{  dx }\]
\[\text{ Let x}^2 + 4x + 3 = t\]
\[ \Rightarrow \left( 2x + 4 \right)dx = dt\]
\[\text{ Then,} \]
\[I = \int\sqrt{t}\text{  dt }- \int\sqrt{\left( x + 2 \right)^2 - 1^2} dx\]
\[ = \frac{2}{3} t^\frac{3}{2} - \left[ \frac{x + 2}{2}\sqrt{\left( x + 2 \right)^2 - 1} - \frac{1^2}{2}\text{ log } \left| \left( x + 2 \right) + \sqrt{\left( x + 2 \right)^2 - 1} \right| \right] + C\]
\[ = \frac{2}{3} \left( x^2 + 4x + 3 \right)^\frac{3}{2} - \frac{1}{2}\left[ \left( x + 2 \right) \sqrt{x^2 + 4x + 3} - \text{ log} \left| \left( x + 2 \right) + \sqrt{x^2 + 4x + 3} \right| \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.29 | Q 8 | पृष्ठ १५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{e^{2x}}{1 + e^x} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×