मराठी

∫ 1 ( X 2 + 2 ) ( X 2 + 5 ) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]
बेरीज

उत्तर

\[\text{We have}, \]
\[I = \int\frac{dx}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)}\]
\[\text{ Putting x}^2 = t\]
\[ \therefore \frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} = \frac{1}{\left( t + 2 \right) \left( t + 5 \right)}\]
\[\text{ Let }\frac{1}{\left( t + 2 \right) \left( t + 5 \right)} = \frac{A}{t + 2} + \frac{B}{t + 5}\]
\[ \Rightarrow \frac{1}{\left( t + 2 \right) \left( t + 5 \right)} = \frac{A \left( t + 5 \right) + B \left( t + 2 \right)}{\left( t + 2 \right) \left( t + 5 \right)}\]
\[ \Rightarrow 1 = A \left( t + 5 \right) + B \left( t + 2 \right)\]
\[\text{ Putting t = - 5}\]
\[ \therefore 1 = B \left( - 5 + 2 \right)\]
\[ \Rightarrow B = - \frac{1}{3}\]
\[\text{ Putting t = - 2}\]
\[ \therefore 1 = A \left( - 2 + 5 \right) + B \times 0\]
\[ \Rightarrow A = \frac{1}{3}\]
\[ \therefore I = \frac{1}{3}\int\frac{dx}{x^2 + 2} - \frac{1}{3}\int\frac{dx}{x^2 + 5}\]
\[ = \frac{1}{3}\int\frac{dx}{x^2 + \left( \sqrt{2} \right)^2} - \frac{1}{3}\int\frac{dx}{x^2 + \left( \sqrt{5} \right)^2}\]
\[ = \frac{1}{3\sqrt{2}} \text{ tan}^{- 1} \left( \frac{x}{\sqrt{2}} \right) - \frac{1}{3\sqrt{5}} \text{ tan}^{- 1} \left( \frac{x}{\sqrt{5}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 125 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int \sin^5 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int x \sec^2 2x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×