मराठी

∫ 1 1 + X + X 2 + X 3 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
बेरीज

उत्तर

\[\text{We have}, \]
\[I = \int\frac{dx}{1 + x + x^2 + x^3}\]
\[ = \int\frac{dx}{\left( 1 + x \right) + x^2 \left( 1 + x \right)}\]
\[ = \int \frac{dx}{\left( 1 + x \right) \left( 1 + x^2 \right)}\]
\[\text{ Let }\frac{1}{\left( x + 1 \right) \left( 1 + x^2 \right)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A \left( x^2 + 1 \right) + \left( Bx + C \right) \left( x + 1 \right)}{\left( x + 1 \right) \left( x^2 + 1 \right)}\]
\[ \Rightarrow 1 = A \left( x^2 + 1 \right) + B x^2 + Bx + Cx + C\]
\[ \Rightarrow 1 = \left( A + B \right) x^2 + \left( B + C \right) x + \left( A + C \right)\]
\[\text{Equating Coefficient of like terms}\]
\[A + B = 0 . . . . . \left( 1 \right)\]
\[B + C = 0 . . . . . \left( 2 \right)\]
\[A + C = 1 . . . . . \left( 3 \right)\]
\[\text{Solving} \left( 1 \right), \left( 2 \right) \text{ and }\left( 3 \right), \text{we get}, \]
\[A = \frac{1}{2}\]
\[B = - \frac{1}{2}\]
\[C = \frac{1}{2}\]
\[ \therefore \frac{1}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{1}{2 \left( x + 1 \right)} + \frac{- \frac{x}{2} + \frac{1}{2}}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{1}{2 \left( x + 1 \right)} - \frac{1}{2} \left( \frac{x}{x^2 + 1} \right) + \frac{1}{2 \left( x^2 + 1 \right)}\]
\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} - \frac{1}{2}\int\frac{x dx}{\left( x^2 + 1 \right)} + \frac{1}{2}\int\frac{dx}{x^2 + 1}\]
\[\text{ Putting x}^2 + 1 = t\]
\[ \Rightarrow 2x\ dx\ = dt\]
\[ \Rightarrow x\ dx\ = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} - \frac{1}{4}\int\frac{dt}{t} + \frac{1}{2}\int\frac{dx}{x^2 + 1}\]
\[ = \frac{1}{2} \text{ log }\left| x + 1 \right| - \frac{1}{4} \text{ log }\left| t \right| + \frac{1}{2} \text{ tan}^{- 1} x + C\]
\[ = \frac{1}{2} \text{ log }\left| x + 1 \right| - \frac{1}{4} \text{ log }\left| x^2 + 1 \right| + \frac{1}{2} \text{ tan}^{- 1} \left( x \right) + C\]
\[ = \frac{1}{2} \text{ log } \left| x + 1 \right| - \frac{1}{2} \text{ log } \left( \sqrt{x^2 + 1} \right) + \frac{1}{2} \text{ tan}^{- 1} \left( x \right) + C\]
\[ = \frac{1}{2} \text{ log } \left( \frac{\left| x + 1 \right|}{\sqrt{x^2 + 1}} \right) + \frac{1}{2} \text{ tan}^{- 1} \left( x \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 124 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

` ∫   tan   x   sec^4  x   dx  `


Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×