Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]
बेरीज
उत्तर
\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} dx\]
Dividing numerator and denominator by cos2x we get ,
\[I = \int\frac{\frac{1}{\cos^2 x}}{\left( \tan x - 2 \right) \left( 2 \tan x + 1 \right)}dx\]
\[ = \int\frac{\sec^2 x}{\left( \tan x - 2 \right) \left( 2 \tan x + 1 \right)} dx\]
\[\text{ Putting tan x = t }\]
\[ \Rightarrow \text{ sec}^2 \text{ x dx} = dt\]
\[ \therefore I = \int\frac{1}{\left( t - 2 \right) \left( 2t + 1 \right)}dt\]
\[ = \int\frac{1}{2 t^2 + t - 4t - 2}dt\]
\[ = \int\frac{1}{2 t^2 - 3t - 2}dt\]
\[ = \frac{1}{2}\int\frac{1}{t^2 - \frac{3t}{2} - 1}dt\]
\[ = \frac{1}{2}\int\frac{1}{t^2 - \frac{3}{2}t + \left( \frac{3}{4} \right)^2 - \left( \frac{3}{4} \right)^2 - 1}dt\]
\[ = \frac{1}{2}\int\frac{1}{\left( t - \frac{3}{4} \right)^2 - \frac{9}{16} - 1}dt\]
\[ = \frac{1}{2}\int\frac{1}{\left( t - \frac{3}{4} \right)^2 - \left( \frac{5}{4} \right)^2}dt\]
\[ = \frac{1}{2} \times \frac{1}{2 \times \frac{5}{4}} \text{ ln }\left| \frac{t - \frac{3}{4} - \frac{5}{4}}{t - \frac{3}{4} + \frac{5}{4}} \right| + C ....................\left[ \because \int\frac{1}{x^2 - a^2}dx = \frac{1}{2a}\text{ ln }\left| \frac{x - a}{x + a} \right| + C \right]\]
\[ = \frac{1}{5} \text{ ln }\left| \frac{t - 2}{t + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{5} \text{ ln } \left| \frac{2 \left( t - 2 \right)}{2t + 1} \right| + C\]
\[ = \frac{1}{5} \text{ ln }\left| \frac{2 \left( \tan x - 2 \right)}{2 \tan x + 1} \right| + C................ \left[ \because t = \tan x \right]\]
\[ = \frac{1}{5} \text{ ln} \left| \frac{\tan x - 2}{2 \tan x + 1} \right| + \frac{1}{5} \text{ ln 2 + C }\]
\[ = \frac{1}{5} \text{ ln }\left| \frac{\tan x - 2}{2 \tan x + 1} \right| + C'\]
\[\text{ where } \]
\[C' = C + \frac{1}{5} \text{ ln 2 }\]
\[ = \int\frac{\sec^2 x}{\left( \tan x - 2 \right) \left( 2 \tan x + 1 \right)} dx\]
\[\text{ Putting tan x = t }\]
\[ \Rightarrow \text{ sec}^2 \text{ x dx} = dt\]
\[ \therefore I = \int\frac{1}{\left( t - 2 \right) \left( 2t + 1 \right)}dt\]
\[ = \int\frac{1}{2 t^2 + t - 4t - 2}dt\]
\[ = \int\frac{1}{2 t^2 - 3t - 2}dt\]
\[ = \frac{1}{2}\int\frac{1}{t^2 - \frac{3t}{2} - 1}dt\]
\[ = \frac{1}{2}\int\frac{1}{t^2 - \frac{3}{2}t + \left( \frac{3}{4} \right)^2 - \left( \frac{3}{4} \right)^2 - 1}dt\]
\[ = \frac{1}{2}\int\frac{1}{\left( t - \frac{3}{4} \right)^2 - \frac{9}{16} - 1}dt\]
\[ = \frac{1}{2}\int\frac{1}{\left( t - \frac{3}{4} \right)^2 - \left( \frac{5}{4} \right)^2}dt\]
\[ = \frac{1}{2} \times \frac{1}{2 \times \frac{5}{4}} \text{ ln }\left| \frac{t - \frac{3}{4} - \frac{5}{4}}{t - \frac{3}{4} + \frac{5}{4}} \right| + C ....................\left[ \because \int\frac{1}{x^2 - a^2}dx = \frac{1}{2a}\text{ ln }\left| \frac{x - a}{x + a} \right| + C \right]\]
\[ = \frac{1}{5} \text{ ln }\left| \frac{t - 2}{t + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{5} \text{ ln } \left| \frac{2 \left( t - 2 \right)}{2t + 1} \right| + C\]
\[ = \frac{1}{5} \text{ ln }\left| \frac{2 \left( \tan x - 2 \right)}{2 \tan x + 1} \right| + C................ \left[ \because t = \tan x \right]\]
\[ = \frac{1}{5} \text{ ln} \left| \frac{\tan x - 2}{2 \tan x + 1} \right| + \frac{1}{5} \text{ ln 2 + C }\]
\[ = \frac{1}{5} \text{ ln }\left| \frac{\tan x - 2}{2 \tan x + 1} \right| + C'\]
\[\text{ where } \]
\[C' = C + \frac{1}{5} \text{ ln 2 }\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]
\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
\[\int \sin^2\text{ b x dx}\]
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1} \text{dx}\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int \cos^7 x \text{ dx } \]
\[\int\frac{1}{x^2 + 6x + 13} dx\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{1}{1 - \cot x} dx\]
\[\int\cos\sqrt{x}\ dx\]
\[\int {cosec}^3 x\ dx\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int \tan^3 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\frac{\cos^7 x}{\sin x} dx\]