Advertisements
Advertisements
प्रश्न
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
बेरीज
उत्तर
\[\text{ We have, }\]
\[I = \int\frac{e^x - 1}{e^x + 1}dx\]
\[ = \int\frac{2 e^x - \left( e^x + 1 \right)}{e^x + 1}dx\]
\[ = \int\frac{2 e^x}{e^x + 1}dx - \int dx\]
\[\text{ Putting e}^x + 1 = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \therefore I = \int\frac{2}{t}dt - \int dx\]
\[ = 2 \text{ log } \left| t \right| - x + C\]
\[ = 2 \text{ log} \left| e^x + 1 \right| - x + C\]
\[ = 2 \text{ log }\left( e^x + 1 \right) - x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int \left( \tan x + \cot x \right)^2 dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
\[\int\sqrt {e^x- 1} \text{dx}\]
\[\int \cot^5 x \text{ dx }\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int2 x^3 e^{x^2} dx\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int x \cos^3 x\ dx\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int \cos^3 (3x)\ dx\]
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int \tan^3 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]
\[\int\frac{\cos^7 x}{\sin x} dx\]
Find: `int (3x +5)/(x^2+3x-18)dx.`