Advertisements
Advertisements
प्रश्न
\[\int x \cos^3 x\ dx\]
बेरीज
उत्तर
Let I=\[\int x \cos^3 x\ dx\]
\[\text{ As we know }, \]
\[\cos 3x = 4 \cos^3 x - 3\cos x\]
\[ \Rightarrow \cos^3 x = \frac{1}{4}\left( \cos 3x + 3\cos x \right)\]
\[\cos 3x = 4 \cos^3 x - 3\cos x\]
\[ \Rightarrow \cos^3 x = \frac{1}{4}\left( \cos 3x + 3\cos x \right)\]
\[\therefore I = \frac{1}{4}\int x . \left( \cos 3x + 3 \cos x \right)dx\]
\[ = \frac{1}{4}\int x_I . \text{ cos}_{II} \left( \text{ 3x }\right) dx + \frac{3}{4} \int x_I . \cos x_{II} \text{ dx }\]
\[ = \frac{1}{4}\left[ x . \int\text{ cos 3x dx }- \int\left\{ \frac{d}{dx}\left( x \right) . \int\text{ cos 3x dx }\right\}dx \right] + \frac{3}{4}\left[ x\int\cos x - \int\left\{ \frac{d}{dx}\left( x \right) . \int\text{ cos x dx }\right\}dx \right]\]
\[ = \frac{1}{4}\left[ x . \frac{\sin 3x}{3} - \int1 . \frac{\sin 3x}{3}dx \right] + \frac{3}{4}\left[ x\left( \sin x \right) - \int1 . \text{ sin x dx } \right]\]
\[ = \frac{x \sin 3x}{12} + \frac{\cos 3x}{36} + \frac{3}{4}x \sin x + \frac{3}{4}\cos x + C\]
\[ = \frac{1}{4}\int x_I . \text{ cos}_{II} \left( \text{ 3x }\right) dx + \frac{3}{4} \int x_I . \cos x_{II} \text{ dx }\]
\[ = \frac{1}{4}\left[ x . \int\text{ cos 3x dx }- \int\left\{ \frac{d}{dx}\left( x \right) . \int\text{ cos 3x dx }\right\}dx \right] + \frac{3}{4}\left[ x\int\cos x - \int\left\{ \frac{d}{dx}\left( x \right) . \int\text{ cos x dx }\right\}dx \right]\]
\[ = \frac{1}{4}\left[ x . \frac{\sin 3x}{3} - \int1 . \frac{\sin 3x}{3}dx \right] + \frac{3}{4}\left[ x\left( \sin x \right) - \int1 . \text{ sin x dx } \right]\]
\[ = \frac{x \sin 3x}{12} + \frac{\cos 3x}{36} + \frac{3}{4}x \sin x + \frac{3}{4}\cos x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int\frac{1}{1 + \cos 2x} dx\]
\[\int\frac{1}{1 - \cos 2x} dx\]
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int \sin^2\text{ b x dx}\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int \sin^3 x \cos^6 x \text{ dx }\]
\[\int\frac{1}{x^2 + 6x + 13} dx\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int \tan^3 x\ dx\]
\[\int x \sin^5 x^2 \cos x^2 dx\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]