Advertisements
Advertisements
प्रश्न
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
बेरीज
उत्तर
\[\text{We have}, \]
\[I = \int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[ = \int\frac{2 - \left( 1 - x^2 \right)}{\sqrt{1 - x^2}} \text{ dx }\]
\[ = 2\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }- \int\frac{1 - x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[ = 2\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }- \int\sqrt{1 - x^2} \text{ dx }\]
\[ = 2 \text{ sin}^{- 1} x - \left[ \frac{x}{2}\sqrt{1 - x^2} + \frac{1}{2} \sin^{- 1} x \right] + C\]
\[ = 2 \sin^{- 1} x - \frac{x}{2}\sqrt{1 - x^2} - \frac{1}{2} \sin^{- 1} x + C\]
\[ = \frac{3}{2} \text{ sin}^{- 1} x - \frac{x}{2}\sqrt{1 - x^2} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int\sqrt {e^x- 1} \text{dx}\]
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{ dx }\]
\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
`int 1/(cos x - sin x)dx`
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int x^2 \text{ cos x dx }\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int \tan^4 x\ dx\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]