Advertisements
Advertisements
प्रश्न
पर्याय
\[2\left( \sin x + x\cos\theta \right) + C\]
- \[2\left( \sin x - x\cos\theta \right) + C\]
\[2\left( \sin x + 2x\cos\theta \right) + C\]
- \[2\left( \sin x - 2x\cos\theta \right) + C\]
उत्तर
\[2\left( \sin x + x\cos\theta \right) + C\]
\[\text{Let }I = \int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\]
\[ = \int\frac{\left( 2 \cos^2 x - 1 \right) - \left( 2 \cos^2 \theta - 1 \right)}{\cos x - \cos\theta}dx\]
\[ = \int\frac{2 \cos^2 x - 1 - 2 \cos^2 \theta + 1}{\cos x - \cos\theta}dx\]
\[ = \int\frac{2\left( \cos x - \cos\theta \right)\left( \cos x + \cos\theta \right)}{\cos x - \cos\theta}dx\]
\[ = \int2\left( \cos x + \cos\theta \right)dx\]
\[ = 2\left( \sin x + x\cos\theta \right) + C\]
\[\text{Therefore, }\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx = 2\left( \sin x + x\cos\theta \right) + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
` ∫ \sqrt{tan x} sec^4 x dx `
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]