Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\left( \frac{\sin^3 x - \cos^3 x}{\sin^2 x \cdot \cos^2 x} \right)dx\]
\[ = \int\frac{\sin^3 x}{\sin^2 x \cdot \cos^2 x}dx - \int\frac{\cos^3 x}{\sin^2 x \cdot \cos^2 x}dx\]
\[ = \int\frac{\sin x}{\cos^2 x}dx - \int\frac{\cos x}{\sin^2 x}dx\]
\[ = \int\frac{\sin x}{\cos x} \times \frac{1}{\cos x}dx - \int\frac{\cos x}{\sin x} \times \frac{1}{\sin x}dx\]
`=∫ sec x tan x dx - ∫ "cosec" x cot x dx`
\[ = \sec x - \left( - \text{cosec x} \right) + C\]
\[ = \sec x + \text{cosec x }+ C\]
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
Evaluate the following integral:
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]