मराठी

∫ Log ( X + 2 ) ( X + 2 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int\frac{\text{log }\left( x + 2 \right) dx}{\left( x + 2 \right)^2}\]
\[\text{ Let log }\left( x + 2 \right) = t\]
\[ \Rightarrow x + 2 = e^t \]
\[ \Rightarrow \frac{1}{\left( x + 2 \right)}dx = dt\]
\[ \therefore I = \int\frac{t}{e^t}dt\]
\[ = \int t e^{- t} dt\]
`  " Taking t as the first function and e"^- t" as the second function " . `
\[ = t\int e^{- t} - \int\left\{ \frac{d}{dt}\left( t \right)\int e^{- 2t} dt \right\}dt\]
\[ = t \times \frac{e^{- t}}{- 1} - \int1 \cdot e^{- t} dt\]
\[ =\text{  - t e}^{- t} + \frac{e^{- t}}{- 1} + C\]
\[ = - e^{- t} \left( t + 1 \right) + C\]
\[ = - \frac{\left( t + 1 \right)}{e^t} + C . . . (1)\]
\[\text{Substituting the value of t in eq} (1) \]
\[ = \frac{- \left[ \text{ log} \left( x + 2 \right) + 1 \right]}{x + 2} + C\]
\[ = - \frac{\text{ log } \left( x + 2 \right)}{x + 2} - \frac{1}{\left( x + 2 \right)} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 23 | पृष्ठ १३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×