Advertisements
Advertisements
प्रश्न
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
बेरीज
उत्तर
\[\int\left( \frac{1 + \cos x}{1 - \cos x} \right) dx\]
\[ = \int\left( \frac{2 \cos^2 \frac{x}{2}}{2 \sin^2 \frac{x}{2}} \right) dx \left[ \therefore 1 + \cos x = 2 \cos^2 \frac{x}{2} \text{and} 1 - \cos x = 2 \sin^2 \frac{x}{2} \right]\]
\[ = \int \cot^2 \frac{x}{2} dx\]
` = ∫ ( "cosec"^2 x/2 -1)` dx
\[ = \frac{- \cot \left( \frac{x}{2} \right)}{\frac{1}{2}} - x + C\]
\[ = - 2 \cot \left( \frac{x}{2} \right) - x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int \sin^5 x \cos x \text{ dx }\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]