मराठी

∫ 1 1 − Sin X + Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int \frac{1}{1 - \sin x + \cos x}dx\]
\[\text{ Putting   sin x}= \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and } cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ = \int \frac{1}{1 - \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{\left( 1 + \tan^2 \frac{x}{2} \right) - 2 \tan x\left( 2 + 1 - \tan^2 \frac{x}{2} \right)}dx\]
\[ = \int \frac{\sec^2 \frac{x}{2}}{2 - 2 \tan \left( \frac{x}{2} \right)}dx\]
\[ = \frac{1}{2}\int \frac{\sec^2 \left( \frac{x}{2} \right)}{1 - \tan \left( \frac{x}{2} \right)}dx\]
\[Let \left[ 1 - \tan \left( \frac{x}{2} \right) \right] = t\]
\[ \Rightarrow - \text{ sec}^2 \left( \frac{x}{2} \right) \times \frac{1}{2}dx = dt\]
\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right)dx = - \text{  2dt }\]
\[ \therefore I = \frac{1}{2} \int \frac{- 2 dt}{t}\]
\[ = - \int \frac{dt}{t}\]
\[ = - \text{ ln }\left| t \right| + C\]
\[ = - \text{ ln }\left| 1 - \tan \frac{x}{2} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.23 | Q 5 | पृष्ठ ११७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int \log_{10} x\ dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×