मराठी

∫ Cos 5 X Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos^5 x}{\sin x} dx\]
बेरीज

उत्तर

\[\int\frac{\cos^5 x}{\sin x}dx\]
\[ = \int \frac{\cos^4 x . \cos x}{\sin x}dx\]
\[ = \int\frac{\left( \cos^2 x \right)^2 . \cos x}{\sin x}dx\]
\[ = \int\frac{\left( 1 - \sin^2 x \right)^2 \times \cos x}{\sin x}dx\]
\[ = \int \frac{\left( 1 - \sin^4 x - 2 \sin^2 x \right)}{\sin x}\text{cos x dx}\]
\[\text{Let sin x }= t\]
\[ \Rightarrow \text{cos x dx} = dt\]
\[Now, \int \frac{\left( 1 - \sin^4 x - 2 \sin^2 x \right)}{\sin x}\text{cos x dx}\]
\[ = \int \frac{\left( 1 + t^4 - 2 t^2 \right)}{t}dt\]
\[ = \int\left( \frac{1}{t} + t^3 - 2t \right)dt\]
\[ = \text{log }\left|\text{ t} \right| + \frac{t^4}{4} - \frac{2 t^2}{2} + C\]
\[ = \text{log} \left|\text{ t }\right| + \frac{t^4}{4} - t^2 + C\]
\[ = \text{log }\left| \sin x \right| + \frac{\sin^4 x}{4} - \sin^2 x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.09 | Q 46 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \cot^5 x  \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×