Advertisements
Advertisements
प्रश्न
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
पर्याय
\[\frac{1}{2}\] log (sec x2 + tan x2) + C
\[\frac{x^2}{2}\] log (sec x2 + tan x2) + C
2 log (sec x2 + tan x2) + C
none of these
MCQ
उत्तर
\[\frac{1}{2}\] log (sec x2 + tan x2) + C
\[\text{ Let I }= \int x \sec x^2 dx\]
\[\text{ Putting x}^2 = t\]
\[ \Rightarrow 2x \text{ dx }= dt\]
\[ \Rightarrow x \text{ dx} = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\sec t \cdot dt\]
\[ = \frac{1}{2} \text{ log } \left| \sec t + \tan t \right| + C\]
\[ = \frac{1}{2} \text{ log }\left| \sec x^2 + \tan x^2 \right| + C \left( \because t = x^2 \right)\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1}{a^2 x^2 + b^2} dx\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int x^2 \sin^2 x\ dx\]
\[\int x^3 \cos x^2 dx\]
\[\int x \sin x \cos x\ dx\]
\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int \sec^4 x\ dx\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]