मराठी

∫ X 2 ( X − 1 ) 3 ( X + 1 ) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
बेरीज

उत्तर

\[\text{We have}, \]
\[I = \int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
\[\text{ Let } \frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} = \frac{A}{x - 1} + \frac{B}{\left( x - 1 \right)^2} + \frac{C}{\left( x - 1 \right)^3} + \frac{D}{x + 1} . . . . . \left( 1 \right)\]
\[ \Rightarrow x^2 = A \left( x - 1 \right)^2 \left( x + 1 \right) + B\left( x - 1 \right)\left( x + 1 \right) + C \left( x + 1 \right) + D \left( x - 1 \right)^3 . . . . . \left( 2 \right)\]
\[\text{ Putting x }= 1 \text{ in }\left( 2 \right), \text{we get}\]
\[1 = 2C\]
\[ \Rightarrow C = \frac{1}{2}\]
\[\text{ Putting x = - 1 in} \left( 2 \right), \text{we get}\]
\[1 = - 8D\]
\[ \Rightarrow D = \frac{- 1}{8}\]

\[\text{ Putting x = 2 in}\left( 2 \right), \text{ we get}\]

\[4 = 3A + 3B + 3C + D\]

\[ \Rightarrow 4 = 3A + 3B + \frac{3}{2} - \frac{1}{8}\]

\[ \Rightarrow 3A + 3B = 4 - \frac{3}{2} + \frac{1}{8}\]

\[ \Rightarrow 3A + 3B = \frac{32 - 12 + 1}{8}\]

\[ \Rightarrow 3A + 3B = \frac{21}{8}\]

\[ \Rightarrow A + B = \frac{7}{8}\]

\[\text{ And putting x = 0 in} \left( 2 \right), \text{ we get}\]

\[0 = A - B + C - D\]

\[ \Rightarrow 0 = A - B + \frac{1}{2} + \frac{1}{8} ..................\left[ \because C = \frac{1}{2}, D = \frac{1}{8} \right]\]

\[ \Rightarrow A - B = - \frac{5}{8}\]

\[\]

 

 

\[\text{ Here, A + B} = \frac{7}{8} \text{ and A - B} = - \frac{5}{8} \Rightarrow A = \frac{1}{8} \text{ and B } = \frac{3}{4}\]

\[\text{ Therefore,} \left( 1 \right) \text{ becomes,} \]

\[\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} = \frac{1}{8\left( x - 1 \right)} + \frac{3}{4 \left( x - 1 \right)^2} + \frac{1}{2 \left( x - 1 \right)^3} - \frac{1}{8\left( x + 1 \right)}\]

\[\text{ Now, integral becomes}\]

\[I = \int\left[ \frac{1}{8\left( x - 1 \right)} + \frac{3}{4 \left( x - 1 \right)^2} + \frac{1}{2 \left( x - 1 \right)^3} - \frac{1}{8\left( x + 1 \right)} \right]dx\]

\[ = \frac{1}{8}\text{ log }\left| x - 1 \right| - \frac{3}{4\left( x - 1 \right)} - \frac{1}{4 \left( x - 1 \right)^2} - \frac{1}{8}\text{ log }\left| x + 1 \right| + C\]

\[ = \frac{1}{8}\text{ log }\left| \frac{x - 1}{x + 1} \right| - \frac{3}{4\left( x - 1 \right)} - \frac{1}{4 \left( x - 1 \right)^2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 122 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


` ∫  tan^3    x   sec^2  x   dx  `

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×