मराठी

∫ 4 X 4 + 3 ( X 2 + 2 ) ( X 2 + 3 ) ( X 2 + 4 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
बेरीज

उत्तर

We have,
\[I = \int \frac{\left( 4 x^4 + 3 \right)dx}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)}\]
\[\text{Putting }x^2 = t\]
Then,
\[\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} = \frac{4 t^2 + 3}{\left( t + 2 \right) \left( t + 3 \right) \left( t + 4 \right)}\]
\[\text{Let }\frac{4 t^2 + 3}{\left( t + 2 \right) \left( t + 3 \right) \left( t + 4 \right)} = \frac{A}{t + 2} + \frac{B}{t + 3} + \frac{C}{t + 4}\]
\[ \Rightarrow \frac{4 t^2 + 3}{\left( t + 2 \right) \left( t + 3 \right) \left( t + 4 \right)} = \frac{A\left( t + 3 \right) \left( t + 4 \right) + B\left( t + 2 \right) \left( t + 4 \right) + C\left( t + 2 \right) \left( t + 3 \right)}{\left( t + 2 \right) \left( t + 3 \right) \left( t + 4 \right)}\]
\[ \Rightarrow 4 t^2 + 3 = A\left( t + 3 \right) \left( t + 4 \right) + B\left( t + 2 \right) \left( t + 4 \right) + C\left( t + 2 \right) \left( t + 3 \right)\]
\[\text{Putting t + 3 = 0}\]
\[ \Rightarrow t = - 3\]
\[ \therefore 4 \times \left( - 3 \right)^2 + 3 = B\left( - 3 + 2 \right) \left( - 3 + 4 \right)\]
\[ \Rightarrow 39 = B\left( - 1 \right)\]
\[ \Rightarrow B = - 39\]
\[\text{Putting t + 2 = 0}\]
\[ \Rightarrow t = - 2\]
\[ \therefore 4 \left( - 2 \right)^2 + 3 = A\left( - 2 + 3 \right) \left( - 2 + 4 \right)\]
\[ \Rightarrow 19 = A \times 1 \times 2\]
\[ \Rightarrow A = \frac{19}{2}\]
\[\text{Let t + 4 = 0}\]
\[ \Rightarrow t = - 4\]
\[ \therefore 4 \times \left( - 4 \right)^2 + 3 = C\left( - 4 + 2 \right) \left( - 4 + 3 \right)\]
\[ \Rightarrow 67 = C\left( - 2 \right) \left( - 1 \right)\]
\[ \Rightarrow C = \frac{67}{2}\]
\[ \therefore \frac{4 t^2 + 3}{\left( t + 2 \right) \left( t + 3 \right) \left( t + 4 \right)} = \frac{19}{2\left( t + 2 \right)} - \frac{39}{t + 3} + \frac{67}{2\left( t + 4 \right)}\]
\[ \Rightarrow \frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} = \frac{19}{2\left( x^2 + 2 \right)} - \frac{39}{x^2 + 3} + \frac{67}{2\left( x^2 + 4 \right)}\]
\[ \therefore I = \frac{19}{2}\int\frac{dx}{x^2 + \left( \sqrt{2} \right)^2} - 39\int\frac{dx}{x^2 + \left( \sqrt{3} \right)^2} - \frac{67}{2}\int\frac{dx}{x^2 + 2^2}\]
\[ = \frac{19}{2} \times \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{x}{\sqrt{2}} \right) - \frac{39}{\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) - \frac{67}{2} \times \frac{1}{2} \tan^{- 1} \left( \frac{x}{2} \right) + C\]
\[ = \frac{19}{2\sqrt{2}} \tan^{- 1} \left( \frac{x}{\sqrt{2}} \right) - \frac{39}{\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) - \frac{67}{4} \tan^{- 1} \left( \frac{x}{2} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 64 | पृष्ठ १७८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int \tan^4 x\ dx\]

\[\int \cot^4 x\ dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×