मराठी

∫ 1 13 + 3 Cos X + 4 Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
बेरीज

उत्तर

\[\text{  Let I }= \int \frac{1}{13 + 3 \cos x + 4 \sin x}dx\]
\[\text{ Putting cos x }= \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and sin x }= \frac{2\tan \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)}\]
\[ \therefore I = \int \frac{1}{13 + 3 \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) + 4 \times 2\frac{\tan \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)}}dx\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{13\left( 1 + \tan^2 \frac{x}{2} \right) + 3 - 3 \tan^2 \frac{x}{2} + 8 \tan \left( \frac{x}{2} \right)} dx\]
\[ = \int \frac{\sec^2 \frac{x}{2}}{13 \tan^2 \frac{x}{2} - 3 \tan^2 \frac{x}{2} + 16 + 8 \tan \left( \frac{x}{2} \right)}dx\]
\[ = \int \frac{\sec^2 \frac{x}{2}}{10 \tan^2 \left( \frac{x}{2} \right) + 8 \tan \left( \frac{x}{2} \right) + 16}dx\]
\[\text{ Let tan} \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \left( \frac{x}{2} \right)dx = dt\]
\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = \int \frac{2 dt}{10 t^2 + 8t + 16}\]
\[ = \int \frac{dt}{5 t^2 + 4t + 8}\]
\[ = \frac{1}{5} \int \frac{dt}{t^2 + \frac{4}{5}t + \frac{8}{5}}\]
\[ = \frac{1}{5}\int \frac{dt}{t^2 + \frac{4}{5}t + \left( \frac{2}{5} \right)^2 - \left( \frac{2}{5} \right)^2 + \frac{8}{5}}\]


\[ = \frac{1}{5}\int \frac{dt}{\left( t + \frac{2}{5} \right)^2 - \frac{4}{25} + \frac{8}{5}}\]
\[ = \frac{1}{5}\int \frac{dt}{\left( t + \frac{2}{5} \right)^2 + \frac{- 4 + 40}{25}}\]
\[ = \frac{1}{5}\int \frac{dt}{\left( t + \frac{2}{5} \right)^2 + \left( \frac{6}{5} \right)^2}\]
\[ = \frac{1}{5} \times \frac{5}{6} \tan^{- 1} \left( \frac{t + \frac{2}{5}}{\frac{6}{5}} \right) + C\]
\[ = \frac{1}{6} \tan^{- 1} \left( \frac{5t + 2}{6} \right) + C\]
\[ = \frac{1}{6} \tan^{- 1} \left( \frac{5 \tan \frac{x}{2} + 2}{6} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.23 | Q 7 | पृष्ठ ११७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×