Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int e^x \left( \tan x - \log \cos x \right)dx\]
\[\text{ here }f(x) = - \text{ log
}\text{ cos x Put e} ^x f(x) = t\]
\[ \Rightarrow f'(x) = \tan x\]
\[\text{let - e}^x \text{ log }\text{ cos x } = t\]
\[\text{ Diff both sides w . r . t x }\]
\[ - \left[ e^x \text{ log }\left( \text{ cos x } \right) + e^x \frac{1}{\cos x} \times \left( - \sin x \right) \right] = \frac{dt}{dx}\]
\[ \Rightarrow \left[ - e^x \text{ log }\left( \text{ cos x } \right) + e^x \tan x \right]dx = dt\]
\[ \therefore \int e^x \left( \tan x - \text{ log }\cos x \right)dx = \int dt\]
\[ = t + C\]
\[ = - e^x \text{ log }\left( \text{ cos x }\right) + C\]
\[ = e^x \text{ log }\left( \sec x \right) + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]