मराठी

∫ √ a + X X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\frac{a + x}{x}}dx\]
 
बेरीज

उत्तर

\[\text{ Let I } = \int\sqrt{\frac{a + x}{x}}dx\]
\[ = \int\frac{\sqrt{\left( a + x \right) \left( a + x \right)}}{\sqrt{x \left( a + x \right)}}\]
\[ = \int\left( \frac{a + x}{\sqrt{x^2 + ax}} \right)dx\]
\[ = a\int\frac{1}{\sqrt{x^2 + ax}}\text{ dx} + \int\frac{x}{\sqrt{x^2 + ax}}\text{ dx}\]
\[ = a\int\frac{1}{\sqrt{x^2 + ax + \left( \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}\text{ dx} + \int\frac{x}{\sqrt{x^2 + ax}}\text{ dx}\]
\[ = a\int\frac{1}{\sqrt{\left( x + \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}\text{ dx}+ \frac{1}{2}\int\frac{2x}{\sqrt{x^2 + ax}}\text{ dx}\]
\[ = a\int\frac{1}{\sqrt{\left( x + \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}\text{ dx}+ \frac{1}{2}\int\left( \frac{2x + a - a}{\sqrt{x^2 + ax}} \right)\text{ dx}\]
\[ = a\int\frac{1}{\sqrt{\left( x + \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}\text{ dx } + \frac{1}{2}\int\frac{\left( 2x + a \right)}{\sqrt{x^2 + ax}}\text{ dx  }- \frac{a}{2}\int\frac{1}{\sqrt{x^2 + ax}}\text{ dx }\]
\[ = \frac{a}{2}\int\frac{1}{\sqrt{\left( x + \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}\text{ dx } + \frac{1}{2}\int\frac{\left( 2x + a \right)}{\sqrt{x^2 + ax}} \text{ dx }\]
\[\text{ Putting  x}^2 + ax = \text{ t in the Ist integral} \]
\[ \Rightarrow \left( 2x + a \right) dx = dt\]
\[ \therefore I = \frac{a}{2}\int\frac{1}{\sqrt{\left( x + \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}dx + \frac{1}{2}\int\frac{1}{\sqrt{t}}dt\]
\[ = \frac{a}{2} \text{ ln  }\left| x + \frac{a}{2} + \sqrt{x^2 + ax} \right| + \frac{1}{2} \times 2\sqrt{t} + C .................\left[ \because \int\frac{1}{\sqrt{x^2 - a^2}}dx = \text{ ln}\left| x + \sqrt{x^2 - a^2} \right| + C \right]\]
\[ = \frac{a}{2} \text{ ln } \left| x + \frac{a}{2} + \sqrt{x^2 + ax} \right| + \sqrt{x^2 + ax} + C ..........\left[ \because t = x^2 + ax \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 74 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int \tan^5 x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×