Advertisements
Advertisements
प्रश्न
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
बेरीज
उत्तर
\[\int \frac{\sec^2 \sqrt{x}}{\sqrt{x}}dx\]
\[\text{Let} \sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]
\[Now, \int \frac{\sec^2 \sqrt{x}}{\sqrt{x}}dx\]
\[ = 2\int \sec^2\text{ t dt}\]
\[ =\text{ 2 }\text{tan }\left( t \right) + C\]
\[ = \text{2 tan }\left( \sqrt{x} \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int\frac{1}{\sin x \cos^3 x} dx\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{1}{a^2 x^2 + b^2} dx\]
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]