Advertisements
Advertisements
प्रश्न
` ∫ cos 3x cos 4x` dx
बेरीज
उत्तर
\[\int\text{cos 4x }\text{cos 3x dx}\]
` = 1/2 ∫ 2 cos 4x cos 3x dx `
\[ = \frac{1}{2}\int\left[ \text{cos} \left( 4x + 3x \right) + \text{cos }\left( 4x - 3x \right) \right]dx \left[ \therefore \text{2 }\text{cos A }\text{cos B} = \text{cos} \left( A + B \right) + \text{cos }\left( A - B \right) \right]\]
\[ = \frac{1}{2}\int\left( \text{cos} \left( 7x \right) + \text{cos x} \right) dx\]
\[ = \frac{1}{2}\left[ \frac{\sin 7x}{7} + \sin x \right] + C\]
\[ = \frac{1}{14}\sin 7x + \frac{1}{2}\sin x + C\]
\[ = \frac{1}{2}\int\left[ \text{cos} \left( 4x + 3x \right) + \text{cos }\left( 4x - 3x \right) \right]dx \left[ \therefore \text{2 }\text{cos A }\text{cos B} = \text{cos} \left( A + B \right) + \text{cos }\left( A - B \right) \right]\]
\[ = \frac{1}{2}\int\left( \text{cos} \left( 7x \right) + \text{cos x} \right) dx\]
\[ = \frac{1}{2}\left[ \frac{\sin 7x}{7} + \sin x \right] + C\]
\[ = \frac{1}{14}\sin 7x + \frac{1}{2}\sin x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{1 + \cos 2x} dx\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\frac{e^{2x}}{1 + e^x} dx\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int \sin^5 x \cos x \text{ dx }\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int\cos\sqrt{x}\ dx\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]