Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
बेरीज
उत्तर
\[\int \frac{dx}{1 - \sin\left( \frac{x}{2} \right)}\]
\[ = \int\frac{\left( 1 + \sin \frac{x}{2} \right)}{\left( 1 - \sin \frac{x}{2} \right) \left( 1 + \sin \frac{x}{2} \right)} dx\]
\[ = \int\left( \frac{1 + \sin \frac{x}{2}}{1 - \sin^2 \frac{x}{2}} \right)dx\]
\[ = \int\left( \frac{1 + \sin\frac{x}{2}}{\cos^2 \frac{x}{2}} \right) dx\]
\[ = \int\left( \sec^2 \frac{x}{2} + \sec \frac{x}{2} \text{tan }\frac{x}{2} \right)dx\]
\[ = \frac{\tan \left( \frac{x}{2} \right)}{\frac{1}{2}} + \frac{\sec \left( \frac{x}{2} \right)}{\frac{1}{2}} + C\]
\[ = 2 \left( \tan \frac{x}{2} + \sec \frac{x}{2} \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{1}{1 - \cos x} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{a}{b + c e^x} dx\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
` ∫ tan 2x tan 3x tan 5x dx `
\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
\[\int2x \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int \sin^5 x \cos x \text{ dx }\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int x^2 e^{- x} \text{ dx }\]
\[\int x \sin x \cos x\ dx\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int \log_{10} x\ dx\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]