मराठी

∫ ( X + 2 ) √ X 2 + X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int \left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\text{ Also,} x + 2 = \lambda\frac{d}{\text{  dx }} \left( x^2 + x + 1 \right) + \mu\]

\[ \Rightarrow x + 2 = \lambda\left( 2x + 1 \right) + \mu\]

\[ \Rightarrow x + 2 = \left( 2\lambda \right)x + \lambda + \mu\]

\[\text{Equating coefficient of like terms}\]

\[2\lambda = 1 \]

\[ \Rightarrow \lambda = \frac{1}{2}\]

\[\text{ And }\lambda + \mu = 2\]

\[ \Rightarrow \frac{1}{2} + \mu = 2\]

\[ \Rightarrow \mu = \frac{3}{2}\]

\[ \therefore I = \int \left[ \left( \frac{1}{2}\left( 2x + 1 \right) + \frac{3}{2} \right)\sqrt{x^2 + x + 1} \right]\text{  dx }\]

\[ = \frac{1}{2}\int \left( 2x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }+ \frac{3}{2}\int\sqrt{x^2 + x + 1} \text{  dx }\]

\[ = \frac{1}{2}\int\left( 2x + 1 \right) \sqrt{x^2 + x + 1}\text{  dx }+ \frac{3}{2}\int\sqrt{x^2 + x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}\text{  dx }\]

\[ = \frac{1}{2}\int \left( 2x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }+ \frac{3}{2} \int\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \text{  dx }\]

\[\text{ Let  x}^2 + x + 1 = t\]

\[ \Rightarrow \left( 2x + 1 \right)\text{  dx }= dt\]

\[\text{ Then, }\]

\[I = \frac{1}{2}\int \sqrt{t}\text{  dt } + \frac{3}{2} \int\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \text{  dx }\]

\[ = \frac{1}{2}\int t^\frac{1}{2} \text{  dt } + \frac{3}{2} \left[ \frac{x + \frac{1}{2}}{2} \sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} + \frac{3}{8}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| \right] + C\]

\[ = \frac{1}{2}\left[ \frac{t\frac{3}{2}}{\frac{3}{2}} \right] + \frac{3}{8}\left( 2x + 1 \right) \sqrt{x^2 + x + 1} + \frac{9}{16}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x + 1} \right| + C\]

\[ = \frac{1}{3} \left( x^2 + x + 1 \right)^\frac{3}{2} + \frac{3}{8} \left( 2x + 1 \right) \sqrt{x^2 + x + 1} + \frac{9}{16}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x + 1} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.29 | Q 4 | पृष्ठ १५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×