English

∫ 4 X 4 + 3 ( X 2 + 2 ) ( X 2 + 3 ) ( X 2 + 4 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
Sum

Solution

We have,
\[I = \int \frac{\left( 4 x^4 + 3 \right)dx}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)}\]
\[\text{Putting }x^2 = t\]
Then,
\[\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} = \frac{4 t^2 + 3}{\left( t + 2 \right) \left( t + 3 \right) \left( t + 4 \right)}\]
\[\text{Let }\frac{4 t^2 + 3}{\left( t + 2 \right) \left( t + 3 \right) \left( t + 4 \right)} = \frac{A}{t + 2} + \frac{B}{t + 3} + \frac{C}{t + 4}\]
\[ \Rightarrow \frac{4 t^2 + 3}{\left( t + 2 \right) \left( t + 3 \right) \left( t + 4 \right)} = \frac{A\left( t + 3 \right) \left( t + 4 \right) + B\left( t + 2 \right) \left( t + 4 \right) + C\left( t + 2 \right) \left( t + 3 \right)}{\left( t + 2 \right) \left( t + 3 \right) \left( t + 4 \right)}\]
\[ \Rightarrow 4 t^2 + 3 = A\left( t + 3 \right) \left( t + 4 \right) + B\left( t + 2 \right) \left( t + 4 \right) + C\left( t + 2 \right) \left( t + 3 \right)\]
\[\text{Putting t + 3 = 0}\]
\[ \Rightarrow t = - 3\]
\[ \therefore 4 \times \left( - 3 \right)^2 + 3 = B\left( - 3 + 2 \right) \left( - 3 + 4 \right)\]
\[ \Rightarrow 39 = B\left( - 1 \right)\]
\[ \Rightarrow B = - 39\]
\[\text{Putting t + 2 = 0}\]
\[ \Rightarrow t = - 2\]
\[ \therefore 4 \left( - 2 \right)^2 + 3 = A\left( - 2 + 3 \right) \left( - 2 + 4 \right)\]
\[ \Rightarrow 19 = A \times 1 \times 2\]
\[ \Rightarrow A = \frac{19}{2}\]
\[\text{Let t + 4 = 0}\]
\[ \Rightarrow t = - 4\]
\[ \therefore 4 \times \left( - 4 \right)^2 + 3 = C\left( - 4 + 2 \right) \left( - 4 + 3 \right)\]
\[ \Rightarrow 67 = C\left( - 2 \right) \left( - 1 \right)\]
\[ \Rightarrow C = \frac{67}{2}\]
\[ \therefore \frac{4 t^2 + 3}{\left( t + 2 \right) \left( t + 3 \right) \left( t + 4 \right)} = \frac{19}{2\left( t + 2 \right)} - \frac{39}{t + 3} + \frac{67}{2\left( t + 4 \right)}\]
\[ \Rightarrow \frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} = \frac{19}{2\left( x^2 + 2 \right)} - \frac{39}{x^2 + 3} + \frac{67}{2\left( x^2 + 4 \right)}\]
\[ \therefore I = \frac{19}{2}\int\frac{dx}{x^2 + \left( \sqrt{2} \right)^2} - 39\int\frac{dx}{x^2 + \left( \sqrt{3} \right)^2} - \frac{67}{2}\int\frac{dx}{x^2 + 2^2}\]
\[ = \frac{19}{2} \times \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{x}{\sqrt{2}} \right) - \frac{39}{\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) - \frac{67}{2} \times \frac{1}{2} \tan^{- 1} \left( \frac{x}{2} \right) + C\]
\[ = \frac{19}{2\sqrt{2}} \tan^{- 1} \left( \frac{x}{\sqrt{2}} \right) - \frac{39}{\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) - \frac{67}{4} \tan^{- 1} \left( \frac{x}{2} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 178]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 64 | Page 178

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int \cos^5 x \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x e^x \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \cos^5 x\ dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×