Advertisements
Advertisements
Question
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
Sum
Solution
` ∫ cos x / \sqrt{4-sin^2 x}`
\[\text{ let }\sin x = t\]
\[ \Rightarrow \text{ cos x dx }= dt\]
Now, ` ∫ cos x / \sqrt{4-sin^2 x}`
\[ = \int\frac{dt}{\sqrt{4 - t^2}}\]
\[ = \int\frac{dt}{\sqrt{2^2 - t^2}}\]
\[ = \sin^{- 1} \left( \frac{t}{2} \right) + C\]
\[ = \sin^{- 1} \left( \frac{\sin x}{2} \right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
` ∫ sin 4x cos 7x dx `
\[\int\frac{1}{x (3 + \log x)} dx\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\int \sec^4 2x \text{ dx }\]
\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int x \sin x \cos x\ dx\]
\[\int x \sin x \cos 2x\ dx\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .