Advertisements
Advertisements
Question
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
Sum
Solution
Let I = `int x^2/[ sqrt( x - 1) ] `dx
Substituting x - 1 = t and dx = dt, we get,
I = `int ( t + 1)^2/sqrt t`dx
= `int ( t^2 + 1 +2t )/ sqrtt` dt
= `int ( t^(3/2) + t^(-1/2) + 2t^(-1/2) )`dt
= `2/5t^(5/2) + 2t^(1/2) + 4/3t^(3/2)` + c
= `[ 6t^(5/2) + 30t^(1/2) + 20t^(3/2)]/15`+ c
= `2/15 t^(1/2)( 3t^2 + 15 + 10t )` + c
= `2/15 sqrt( x - 1 )[ 3( x -1 )^2 + 15 + 10( x - 1)]`+ c
= `2/15 sqrt( x - 1 )[ 3( x^2 + 1 - 2x ) + 15 + 10x - 10]`+ c
= `2/15 sqrt( x - 1 )[ 3x^2 + 3 - 6x + 15 + 10x - 10]`+ c
= `2/15 sqrt( x - 1 ) [ 3x^2 + 4x + 8 ]`+ c
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
` ∫ sin 4x cos 7x dx `
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int x^2 e^{- x} \text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int x^3 \cos x^2 dx\]
\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int \tan^3 x\ dx\]
\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]
\[\int \tan^3 x\ \sec^4 x\ dx\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int \log_{10} x\ dx\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]
Find: `int (3x +5)/(x^2+3x-18)dx.`