English

∫ Tan 3 X Sec 4 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \tan^3 x\ \sec^4 x\ dx\]
Sum

Solution

\[\text{ Let I  }= \int \tan^3 x \cdot \sec^4 x\ dx\]
\[ = \int \tan^3 x \cdot \sec^2 x \cdot \sec^2 x\ dx\]
\[ = \int \tan^3 x \left( 1 + \tan^2 x \right) \cdot \sec^2 x\ dx\]
\[ = \int\left( \tan^3 x + \tan^5 x \right) \sec^2 x\ dx\]
\[\text{Putting} \tan x = t\]
\[ \Rightarrow \sec^2 x \text{ dx } = dt\]
\[ \therefore I = \int \left( t^3 + t^5 \right) dt\]
\[ = \frac{t^4}{4} + \frac{t^6}{6} + C\]
\[ = \frac{\tan^4 x}{4} + \frac{\tan^6 x}{6} + C........... \left[ \because t = \tan x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 82 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x e^{2x} \text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×