English

∫ E X E 2 X + 5 E X + 6 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
Sum

Solution

\[\int\frac{e^x dx}{e^{2x} + 5 e^x + 6}\]
\[\text{ let } e^x = t\]
\[ \Rightarrow e^x \text{ dx }= dt\]
\[Now, \int\frac{e^x dx}{e^{2x} + 5 e^x + 6}\]
\[ = \int\frac{dt}{t^2 + 5t + 6}\]
\[ = \int\frac{dt}{t^2 + 5t + \left( \frac{5}{2} \right)^2 - \left( \frac{5}{2} \right)^2 + 6}\]
\[ = \int\frac{dt}{\left( t + \frac{5}{2} \right)^2 - \frac{25}{4} + 6}\]
\[ = \int\frac{dt}{\left( t + \frac{5}{2} \right)^2 - \frac{25 + 24}{4}}\]
\[ = \int\frac{dt}{\left( t + \frac{5}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \frac{1}{2 \times \frac{1}{2}} \log \left| \frac{t + \frac{5}{2} - \frac{1}{2}}{t + \frac{5}{2} + \frac{1}{2}} \right| + C\]
\[ = \text{ log }\left| \frac{t + 2}{t + 3} \right| + C\]
\[ = \text{ log}  \left| \frac{e^x + 2}{e^x + 3} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.16 [Page 90]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.16 | Q 4 | Page 90

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int x^3 \cos x^4 dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×