Advertisements
Advertisements
प्रश्न
\[\int \tan^3 x\ \sec^4 x\ dx\]
योग
उत्तर
\[\text{ Let I }= \int \tan^3 x \cdot \sec^4 x\ dx\]
\[ = \int \tan^3 x \cdot \sec^2 x \cdot \sec^2 x\ dx\]
\[ = \int \tan^3 x \left( 1 + \tan^2 x \right) \cdot \sec^2 x\ dx\]
\[ = \int\left( \tan^3 x + \tan^5 x \right) \sec^2 x\ dx\]
\[\text{Putting} \tan x = t\]
\[ \Rightarrow \sec^2 x \text{ dx } = dt\]
\[ \therefore I = \int \left( t^3 + t^5 \right) dt\]
\[ = \frac{t^4}{4} + \frac{t^6}{6} + C\]
\[ = \frac{\tan^4 x}{4} + \frac{\tan^6 x}{6} + C........... \left[ \because t = \tan x \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]
`∫ cos ^4 2x dx `
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{e^x + 1}{e^x + x} dx\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\int\frac{e^{2x}}{1 + e^x} dx\]
\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int \cot^6 x \text{ dx }\]
\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int x\sqrt{x^4 + 1} \text{ dx}\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int \cos^3 (3x)\ dx\]
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]