हिंदी

∫ 1 Sec X + C O S E C X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]
योग

उत्तर

\[\text{We have}, \]
\[I = \int\frac{1}{\sec x + \text{ cosec x}} \text{ dx}\]
\[I = \int\frac{1}{\frac{1}{\cos x} + \frac{1}{\sin x}} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{2\sin x \cos x}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{1 + 2\sin x \cos x - 1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{\sin^2 x + \cos^2 x + 2\sin x \cos x - 1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{\left( \sin x + \cos x \right)^2 - 1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{\left( \sin x + \cos x \right)^2}{\sin x + \cos x} \text{ dx} - \frac{1}{2}\int\frac{1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\left( \sin x + \cos x \right) \text{ dx}- \frac{1}{2}\int\frac{1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) + C_1 - \frac{1}{2\sqrt{2}}\int\frac{1}{\frac{1}{\sqrt{2}}\left( \sin x + \cos x \right)} \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) + C_1 - \frac{1}{2\sqrt{2}}\int\frac{1}{\sin x \cos\frac{\pi}{4} + \cos x \sin\frac{\pi}{4}} \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) + C_1 - \frac{1}{2\sqrt{2}}\int\frac{1}{\sin\left( x + \frac{\pi}{4} \right)} \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) + C_1 - \frac{1}{2\sqrt{2}}\int cosec\left( x + \frac{\pi}{4} \right) \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) - \frac{1}{2\sqrt{2}}\text{ log}\left| \tan\left( \frac{x}{2} + \frac{\pi}{8} \right) \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 83 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int \sec^4 x\ dx\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×