हिंदी

∫ 3 + 4 X − X 2 ( X + 2 ) ( X − 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
योग

उत्तर

\[\int\left( \frac{3 + 4x - x^2}{x^2 - x + 2x - 2} \right)dx\]
\[ = \int\left( \frac{- x^2 + 4x + 3}{x^2 + x - 2} \right)dx\]
\[\frac{- x^2 + 4x + 3}{x^2 + x - 2} = - 1 + \frac{5x + 1}{x^2 + x - 2} .............(1)\]
\[ \therefore \frac{5x + 1}{x^2 + x - 2} = \frac{5x + 1}{x^2 + 2x - x - 2}\]
\[ = \frac{5x + 1}{x\left( x + 2 \right) - 1\left( x + 2 \right)}\]
\[\text{Let }\frac{5x + 1}{\left( x - 1 \right)\left( x + 2 \right)} = \frac{A}{x - 1} + \frac{B}{x + 2}\]
\[ \Rightarrow \frac{5x + 1}{\left( x - 1 \right)\left( x + 2 \right)} = \frac{A\left( x + 2 \right) + B\left( x - 1 \right)}{\left( x - 1 \right)\left( x + 2 \right)}\]
\[ \Rightarrow 5x + 1 = A\left( x + 2 \right) + B\left( x - 1 \right) ..........(2)\]
\[\text{Putting }x + 2 = 0\text{ or }x = - 2\text{ in eq. (2)}\]
\[ \Rightarrow 5x - 2 + 1 = A \times 0 + B\left( - 2 - 1 \right)\]
\[ \Rightarrow B = 3\]
\[\text{Putting }x - 1 = 0\text{ or }x = 1\text{ in eq. (2)}\]
\[ \Rightarrow 5 \times 1 + 1 = A\left( 3 \right) + B \times 0\]
\[ \Rightarrow A = 2\]
\[ \therefore \frac{5x + 1}{\left( x - 1 \right)\left( x + 2 \right)} = \frac{2}{x - 1} + \frac{3}{x + 2} ............(3)\]
From (1) and (3)
\[\frac{- x^2 + 4x + 3}{x^2 + x - 2} = - 1 + \frac{2}{x - 1} + \frac{3}{x + 2}\]
\[ \Rightarrow \int\frac{- x^2 + 4x + 3}{x^2 + x - 2}dx = \int - 1 dx + \int\frac{2}{x - 1}dx + \int\frac{3}{x + 2} dx\]
\[ = - x + 2 \ln\left( x - 1 \right) + 3 \ln\left( x + 2 \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 4 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int x \sec^2 2x\ dx\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×