English

∫ 1 X 4 − 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{x^4 - 1} dx\]
Sum

Solution

We have,
\[I = \int\frac{dx}{x^4 - 1}\]
\[ = \int\frac{dx}{\left( x^2 - 1 \right) \left( x^2 + 1 \right)}\]
\[ = \int\frac{dx}{\left( x - 1 \right) \left( x + 1 \right) \left( x^2 + 1 \right)}\]
\[\text{Let }\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{Cx + D}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A\left( x^2 + 1 \right) \left( x + 1 \right) + B\left( x - 1 \right) \left( x^2 + 1 \right) \left( Cx + D \right) \left( x - 1 \right) \left( x + 1 \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( x^2 + 1 \right)}\]
\[ \Rightarrow 1 = A\left( x^2 + 1 \right) \left( x + 1 \right) + B \left( x - 1 \right) \left( x^2 + 1 \right) + \left( Cx + D \right) \left( x^2 - 1 \right)\]
\[ \Rightarrow 1 = A\left( x^3 + x^2 + x + 1 \right) + B\left( x^3 + x - x^2 - 1 \right) + \left( C x^3 - Cx + D x^2 - D \right)\]
\[ \Rightarrow 1 = \left( A + B + C \right) x^3 + x^2 \left( A - B + D \right) + x\left( A + B - C \right) + A - B - D\]
\[\text{Equating the coefficients of like terms} . \]
\[A + B + C = 0 . . . . . \left( 1 \right)\]
\[A - B + D = 0 . . . . . \left( 2 \right)\]
\[A + B - C = 0 . . . . . \left( 3 \right)\]
\[A - B - D = 1 . . . . . \left( 4 \right)\]
\[\text{Solving these four equations we get}\]
\[A = \frac{1}{4}, B = - \frac{1}{4}, C = 0, D = - \frac{1}{2}\]
\[ \therefore \frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{1}{4\left( x - 1 \right)} - \frac{1}{4\left( x + 1 \right)} - \frac{1}{2\left( x^2 + 1 \right)}\]
\[ \Rightarrow I = \frac{1}{4}\int \frac{dx}{x - 1} - \frac{1}{4}\int\frac{dx}{x + 1} - \frac{1}{2}\int\frac{dx}{x^2 + 1}\]
\[ = \frac{1}{4}\log \left( x - 1 \right) - \frac{1}{4}\log \left( x + 1 \right) - \frac{1}{2} \tan^{- 1} \left( x \right) + C'\]
\[ = \frac{1}{4}\log \left| \frac{x - 1}{x + 1} \right| - \frac{1}{2} \tan^{- 1} \left( x \right) + C'\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 55 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

` ∫      tan^5    x   dx `


\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×