English

∫ 1 1 − 2 Sin X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int \frac{1}{1 - 2 \sin x}   \text{ dx }\]
\[\text{  Putting }\ \sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow I = \int\frac{1}{1 - 2 \times \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{\left( 1 + \tan^2 \frac{x}{2} \right) - 4 \tan \left( \frac{x}{2} \right)}dx\]
\[ = \int \frac{\text{ sec}^2 \left( \frac{x}{2} \right)}{\tan^2 \left( \frac{x}{2} \right) - 4 \tan \left( \frac{x}{2} \right) + 1} dx\]
\[\text{  Let tan} \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right) \times \frac{1}{2}dx = dt\]
\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = 2\int \frac{dt}{t^2 - 4t + 1}\]
\[ = 2\int \frac{dt}{t^2 - 4t + 4 - 4 + 1}\]
\[ = 2 \int \frac{dt}{\left( t - 2 \right)^2 - 3}\]


\[ = 2 \int \frac{dt}{\left( t - 2 \right)^2 - \left( \sqrt{3} \right)^2}\]
\[ = 2 \times \frac{1}{2\sqrt{3}}\text{ ln }\left| \frac{t - 2 - \sqrt{3}}{t - 2 + \sqrt{3}} \right| + C\]
\[ = \frac{1}{\sqrt{3}}\text{ ln} \left| \frac{\tan \left( \frac{x}{2} \right) - 2 - \sqrt{3}}{\tan \left( \frac{x}{2} \right) - 2 + \sqrt{3}} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.23 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.23 | Q 3 | Page 117

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

`∫     cos ^4  2x   dx `


` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×