English

∫ X N ⋅ Log X D X - Mathematics

Advertisements
Advertisements

Question

`int"x"^"n"."log"  "x"  "dx"`
Sum

Solution

`int"x"^"n"."log"  "x"  "dx"`

= `int"log" "x"  "x"^"n"  "dx"`

`int"u"."v" "dx" = "u" int "v" "dx" - int ("du"/"dx") [int "v dx"] "dx"`

= `"log x" int "x"^"n" "dx" - int ["d"/"dx" ("log x")int "x"^"n" "dx"] "dx"`

= `"log x" xx ("x"^("n" + 1))/("n" + 1) - int 1/"x".("x"^("n" + 1))/("n" + 1) "dx"`

= `("x"^("n" + 1) "log x")/("n" + 1) - 1/("n" + 1) int"x"^"n" "dx"`

= `("x"^("n" + 1) "log x")/("n" + 1) - ("x"^("n" + 1))/("n" + 1)^2 + "C"`

= `("x"^("n" + 1) "log x")/("n" + 1) ["log x" - 1/("n" + 1)] + "C"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 133]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 14 | Page 133

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×