Advertisements
Advertisements
Question
Solution
`int"x"^"n"."log" "x" "dx"`
= `int"log" "x" "x"^"n" "dx"`
`int"u"."v" "dx" = "u" int "v" "dx" - int ("du"/"dx") [int "v dx"] "dx"`
= `"log x" int "x"^"n" "dx" - int ["d"/"dx" ("log x")int "x"^"n" "dx"] "dx"`
= `"log x" xx ("x"^("n" + 1))/("n" + 1) - int 1/"x".("x"^("n" + 1))/("n" + 1) "dx"`
= `("x"^("n" + 1) "log x")/("n" + 1) - 1/("n" + 1) int"x"^"n" "dx"`
= `("x"^("n" + 1) "log x")/("n" + 1) - ("x"^("n" + 1))/("n" + 1)^2 + "C"`
= `("x"^("n" + 1) "log x")/("n" + 1) ["log x" - 1/("n" + 1)] + "C"`
APPEARS IN
RELATED QUESTIONS
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]