English

∫ X Sin − 1 X ( 1 − X 2 ) 3 / 2 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]
Sum

Solution

\[\text{We have}, \]

\[I = \int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^\frac{3}{2}} dx\]

\[\text{ Putting  sin}^{- 1} x = \theta\]

\[ \Rightarrow x = \sin\theta\]

\[ \Rightarrow dx = \cos\text{ θ    dθ}\]

\[ \therefore I = \int\frac{\text{ sin θ   θ  cosθ  dθ }}{\left( 1 - \sin^2 \theta \right)^\frac{3}{2}}\]

\[ = \int\frac{\theta \sin\theta \cos\text{ θ    dθ}}{\left( \cos^2 \theta \right)^\frac{3}{2}}\]

\[ = \int\theta\frac{\sin\theta}{\cos^2 \theta} d\theta\]

\[ = \int \theta_I \sec \theta_{II}  \tan   \text{ θ    dθ}\]

\[ = \theta \times \sec\theta - \int1 \times \sec\text{ θ    dθ}\]

\[ = \theta \times \sec\theta - \int\sec \text{ θ    dθ}\]

\[ = \theta \times \sec\theta - \text{ log }\left| \sec\theta + \tan\theta \right| + C\]

\[ = \frac{\theta}{\cos\theta} - \text{ log }\left| \frac{1}{\cos\theta} + \frac{\sin\theta}{\cos\theta} \right| + C\]

\[ = \frac{\theta}{\sqrt{1 - \sin^2 \theta}} - \text{ log }\left| \frac{1 + \sin\theta}{\cos\theta} \right| + C\]

\[ = \frac{\theta}{\sqrt{1 - \sin^2 \theta}} - \text{ log }\left| \frac{1 + \sin\theta}{\sqrt{1 - \sin^2 \theta}} \right| + C\]

\[ = \frac{\theta}{\sqrt{1 - \sin^2 \theta}} - \text{ log} \left| \frac{\sqrt{1 + \sin\theta}}{\sqrt{1 - \sin\theta}} \right| + C\]

\[ = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}} - \text{ log }\left| \frac{\sqrt{1 + x}}{\sqrt{1 - x}} \right| + C\]

\[ = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}} - \frac{1}{2} \text{ log} \left| \frac{1 + x}{1 - x} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 117 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \tan x + \cot x \right)^2 dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

` ∫  sec^6   x  tan    x   dx `

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \sin^4 2x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×