मराठी

∫ 2 X + 1 √ X 2 + 4 X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int\frac{\left( 2x + 1 \right) dx}{\sqrt{x^2 + 4x + 3}}\]
\[\text{ Consider,} \]
\[2x + 1 = A \frac{d}{dx} \left( x^2 + 4x + 3 \right) + B\]
\[ \Rightarrow 2x + 1 = A \left( 2x + 4 \right) + B\]
\[ \Rightarrow 2x + 1 = \left( 2A \right) x + 4A + B\]
\[\text{Equating Coefficients of like terms}\]
\[\text{ 2 A} = 2 \]
\[ \Rightarrow A = 1\]
\[\text{ And }\]
\[4A + B = 1\]
\[ \Rightarrow 4 + B = 1\]
\[ \Rightarrow B = - 3\]
\[ \therefore I = \int\left( \frac{2x + 4 - 3}{\sqrt{x^2 + 4x + 3}} \right)dx\]
\[ = \int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 3}} - 3\int\frac{dx}{\sqrt{x^2 + 4x + 4 - 4 + 3}}\]
\[ = \int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 3}} - 3\int\frac{dx}{\sqrt{\left( x + 2 \right)^2 - 1^2}}\]
\[\text{ Let x}^2 + 4x + 3 = t\]
\[ \Rightarrow \left( 2x + 4 \right) dx = dt\]
\[\text{ Then,} \]
\[I = \int\frac{dt}{\sqrt{t}} - 3\int\frac{dx}{\sqrt{\left( x + 2 \right)^2 - 1^2}}\]
\[ = \int t^{- \frac{1}{2}} dt - 3 \int\frac{dx}{\sqrt{\left( x + 2 \right)^2 - 1^2}}\]
\[ = \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] - 3 \text{ log }\left| x + 2 + \sqrt{\left( x + 2 \right)^2 - 1} \right| + C\]
\[ = 2\sqrt{t} - 3 \text{ log} \left| x + 2 + \sqrt{x^2 + 4x + 3} \right| + C\]
\[ = 2\sqrt{x^2 + 4x + 3} - 3 \text{ log} \left| x + 2 + \sqrt{x^2 + 4x + 3} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ १११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.21 | Q 15 | पृष्ठ १११

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int x \cos x\ dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×