Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{dx}{x\left( x^6 + 1 \right)}\]
\[ = \int\frac{x^5 dx}{x^6 \left( x^6 + 1 \right)}\]
\[\text{ let }x^6 = t\]
\[ \Rightarrow 6 x^5 dx = dt\]
\[ \Rightarrow x^5 dx = \frac{dt}{6}\]
\[Now, \int\frac{dx}{x^6 \left( x^6 + 1 \right)}\]
\[ = \frac{1}{6}\int\frac{dt}{t\left( t + 1 \right)}\]
\[ = \frac{1}{6}\int\frac{dt}{t^2 + t}\]
\[ = \frac{1}{6}\int\frac{dt}{t^2 + t + \frac{1}{4} - \frac{1}{4}}\]
\[ = \frac{1}{6}\int\frac{dt}{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = \frac{1}{6} \times \frac{1}{2 \times \frac{1}{2}} \text{ log }\left| \frac{t + \frac{1}{2} - \frac{1}{2}}{t + \frac{1}{2} + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{6} \text{ log } \left| \frac{t}{t + 1} \right| + C\]
\[ = \frac{1}{6} \text{ log }\left| \frac{x^6}{x^6 + 1} \right| + C\]
APPEARS IN
संबंधित प्रश्न
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]