मराठी

∫ 2 X + 5 √ X 2 + 2 X + 5 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
बेरीज

उत्तर

\[\text{ Let I }= \int\frac{\left( 2x + 5 \right) dx}{\sqrt{x^2 + 2x + 5}}\]
\[\text{ Consider,} \]
\[2x + 5 = A \frac{d}{dx} \left( x^2 + 2x + 5 \right) + B\]
\[ \Rightarrow 2x + 5 = A \left( 2x + 2 \right) + B\]
\[ \Rightarrow 2x + 5 = \left( 2A \right) x + 2A + B\]
\[\text{Equating Coefficients of like terms}\]
\[2A = 2 \Rightarrow A = 1\]
\[\text{ And }\]
\[ 2A + B = 5 \Rightarrow B = 3\]
\[ \therefore I = \int\left( \frac{2x + 2 + 3}{\sqrt{x^2 + 2x + 5}} \right) dx\]
\[ = \int\frac{\left( 2x + 2 \right) dx}{\sqrt{x^2 + 2x + 5}} + 3\int\frac{dx}{\sqrt{x^2 + 2x + 5}}\]
\[\text{ let x}^2 + 2x + 5 = t\]
\[ \Rightarrow \left( 2x + 2 \right) dx = dt\]
\[\text{ Then,} \]
\[I = \int\frac{dt}{\sqrt{t}} + 3\int\frac{dx}{\sqrt{x^2 + 2x + 1 + 4}}\]
\[ = \int t^{- \frac{1}{2}} dt + 3 \int\frac{dx}{\sqrt{\left( x + 1 \right)^2 + 2^2}}\]
\[ = \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} + 3 \text{ log }\left| x + 1 + \sqrt{\left( x + 1 \right)^2 + 4} \right| + C\]
\[ = 2\sqrt{t} + 3 \text{ log }\left| x + 1 + \sqrt{x^2 + 2x + 5} \right| + C\]
\[ = 2\sqrt{x^2 + 2x + 5} + 3 \text{ log }\left| x + 1 + \sqrt{x^2 + 2x + 5} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.21 | Q 12 | पृष्ठ ११०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int \tan^4 x\ dx\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×