मराठी

If ∫ Sin 8 X − Cos 8 X 1 − 2 Sin 2 X Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]

पर्याय

  • -1/2

  • 1/2

  • -1

  • 1

MCQ

उत्तर

`−1/2`

 

\[\text{If }\int\left( \frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} \right)dx = a \sin 2x + C ..............(1)\]

\[\text{Considering LHS of eq. (1)}\]

\[ \Rightarrow \int\frac{\left( \sin^4 x - \cos^4 x \right) \left( \sin^4 x + \cos^4 x \right)}{\left( 1 - 2 \sin^2 x \cos^2 x \right)}\]

\[ \Rightarrow \int\frac{\left( \sin^2 x - \cos^2 x \right) \left( \sin^2 x + \cos^2 x \right) \cdot \left( \sin^4 x + \cos^4 x \right) dx}{\left\{ \left( \sin^2 x + \cos^2 x \right)^2 - 2 \sin^2 x \cos^2 x \right\}}\]

\[ \Rightarrow \int\frac{\left( \sin^2 x - \cos^2 x \right) \cdot \left( \sin^4 x + \cos^4 x \right)dx}{\left( \sin^4 x + \cos^4 x + 2 \sin^2 x \cos^2 x - 2 \sin^2 x \cos^2 x \right)}\]

\[ \Rightarrow - \int\frac{\left( \cos^2 x - \sin^2 x \right) \times \left( \sin^4 x + \cos^4 x \right) dx}{\left( \sin^4 x + \cos^4 x \right)}\]

\[ \Rightarrow - \int\cos \left( 2x \right) dx ..............\left( \because \cos^2 x - \sin^2 x = \cos 2x \right) .............(2)\]

\[\text{Comparing the RHS of eq. (1) with eq. (2) we get,} \]

\[a = - \frac{1}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २००]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 8 | पृष्ठ २००

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int\cos\sqrt{x}\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×