मराठी

∫ X + 2 √ X 2 + 2 X − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int\frac{\left( x + 2 \right) dx}{\sqrt{x^2 + 2x - 1}}\]
\[\text{ Consider }, \]
\[x + 2 = A \frac{d}{dx} \left( x^2 + 2x - 1 \right) + B\]
\[ \Rightarrow x + 2 = A \left( 2x + 2 \right) + B\]
\[ \Rightarrow x + 2 = \left( 2A \right) x + 2A + B\]
\[\text{ Equating Coefficients of  like terms}\]
\[2A = 1\]
\[ \Rightarrow A = \frac{1}{2}\]
\[\text{ And }\]
\[2A + B = 2\]
\[ \Rightarrow 2 \times \frac{1}{2} + B = 2\]
\[ \Rightarrow B = 1\]
\[\text{ Then }, \]
\[I = \int\frac{\left[ \frac{1}{2} \left( 2x + 2 \right) + 1 \right]}{\sqrt{x^2 + 2x - 1}}dx\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 2 \right) dx}{\sqrt{x^2 + 2x - 1}} + \int\frac{dx}{\sqrt{x^2 + 2x - 1}}\]
\[\text{ let x }^2 + 2x - 1 = t\]
\[ \Rightarrow \left( 2x + 2 \right) dx = dt\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{\sqrt{t}} + \int\frac{dx}{\sqrt{x^2 + 2x - 1}}\]
\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt + \int\frac{dx}{\sqrt{x^2 + 2x + 1 - 2}}\]
\[ = \frac{1}{2} \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + \int\frac{dx}{\sqrt{\left( x + 1 \right)^2 - \left( \sqrt{2} \right)^2}}\]
\[ = \sqrt{t} + \text{ log  }\left| x + 1 + \sqrt{\left( x + 1 \right)^2 - \left( \sqrt{2} \right)^2} \right| + C\]
\[ = \sqrt{x^2 + 2x - 1} + \text{ log }\left| x + 1 + \sqrt{x^2 + 2x - 1} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.21 | Q 7 | पृष्ठ ११०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int x \sin x \cos 2x\ dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int \sin^4 2x\ dx\]

\[\int \tan^3 x\ dx\]

\[\int \tan^4 x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×