मराठी

If F' (X) = X + B, F(1) = 5, F(2) = 13, Find F(X) - Mathematics

Advertisements
Advertisements

प्रश्न

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)

बेरीज

उत्तर

\[f'\left( x \right) = x + b, f\left( 1 \right) = 5, f\left( 2 \right) = 13\]
\[ f'\left( x \right) = x + b\]
\[\int{f}'\left( x \right)dx = \int\left( x + b \right)dx\]
\[f\left( x \right) = \frac{x^2}{2} + bx + C . . . . (i)\]
\[f\left( 1 \right) = 5, f\left( 2 \right) = 13 \left( Given \right)\]
\[\text{Puting x} = \text{1  in (i)}\]
\[f\left( 1 \right) = \frac{1^2}{2} + b1 + C\]
\[5 = \frac{1}{2} + b + C . . . \left( ii \right)\]
\[\text{Puting x }= \text{2 in (i)}\]
\[f\left( 2 \right) = \frac{2^2}{2} + b2 + C\]
\[13 = \frac{4}{2} + 2b + C\]
\[13 = 2 + 2b + C . . . (iii)\]
\[\text{Solving (ii) and (iii) we get}, \]
\[b = \frac{13}{2} \text{and C }= - 2\]
\[Thus, f\left( x \right) = \frac{x^2}{2} + \frac{13}{2}x - 2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.02 | Q 46 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int \sin^5 x \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×