मराठी

∫ E X ( 1 + Sin X 1 + Cos X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
बेरीज

उत्तर

\[\text{ Let I } = \int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[ = \int e^x \left( \frac{1}{1 + \cos x} + \frac{\sin x}{1 + \cos x} \right) dx\]

\[ = \int e^x \left( \frac{1}{2 \cos^2 \frac{x}{2}} + \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos^2 \frac{x}{2}} \right) dx\]

\[ = \int e^x \left( \frac{1}{2} \sec^2 \frac{x}{2} + \tan \frac{x}{2} \right) dx\]

\[ \text{ Putting e}^x \tan \frac{x}{2} = t\]

\[\text{ Diff  both  sides w . r . t . x }\]

\[ e^x \cdot \tan \left( \frac{x}{2} \right) + e^x \times \frac{1}{2} \sec^2 \frac{x}{2} = \frac{dt}{dx}\]

\[ \Rightarrow e^x \left[ \tan \frac{x}{2} + \frac{1}{2} \sec^2 \left( \frac{x}{2} \right) \right] dx = dt\]

\[ \therefore \int e^x \left( \frac{1}{2} \sec^2 \frac{x}{2} + \tan \frac{x}{2} \right) dx = \int dt\]

\[ = t + C\]

\[ = e^x \tan\left( \frac{x}{2} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.26 | Q 3 | पृष्ठ १४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

`∫     cos ^4  2x   dx `


\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×