Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[ = \int e^x \left( \frac{1}{1 + \cos x} + \frac{\sin x}{1 + \cos x} \right) dx\]
\[ = \int e^x \left( \frac{1}{2 \cos^2 \frac{x}{2}} + \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos^2 \frac{x}{2}} \right) dx\]
\[ = \int e^x \left( \frac{1}{2} \sec^2 \frac{x}{2} + \tan \frac{x}{2} \right) dx\]
\[ \text{ Putting e}^x \tan \frac{x}{2} = t\]
\[\text{ Diff both sides w . r . t . x }\]
\[ e^x \cdot \tan \left( \frac{x}{2} \right) + e^x \times \frac{1}{2} \sec^2 \frac{x}{2} = \frac{dt}{dx}\]
\[ \Rightarrow e^x \left[ \tan \frac{x}{2} + \frac{1}{2} \sec^2 \left( \frac{x}{2} \right) \right] dx = dt\]
\[ \therefore \int e^x \left( \frac{1}{2} \sec^2 \frac{x}{2} + \tan \frac{x}{2} \right) dx = \int dt\]
\[ = t + C\]
\[ = e^x \tan\left( \frac{x}{2} \right) + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
` ∫ 1/ {1+ cos 3x} ` dx
`∫ cos ^4 2x dx `
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]