मराठी

∫ 1 √ 2 X + 3 + √ 2 X − 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
बेरीज

उत्तर

\[\int\frac{dx}{\left( \sqrt{2x + 3} + \sqrt{2x} - 3 \right)}\]

Rationalise the denominator

\[= \int\frac{\left( \sqrt{2x + 3} - \sqrt{2x - 3} \right)}{\left( \sqrt{2x + 3} + \sqrt{2x - 3} \right)\left( \sqrt{2x + 3} - \sqrt{2x - 3} \right)}dx\]
\[ = \int\frac{\left( \sqrt{2x + 3} - \sqrt{2x - 3} \right)}{\left( 2x + 3 \right) - \left( 2x - 3 \right)}dx\]
\[ = \frac{1}{6}\int \left( 2x + 3 \right)^\frac{1}{2} dx - \frac{1}{6}\int \left( 2x - 3 \right)^\frac{1}{2} dx\]
\[ = \frac{1}{6}\left[ \frac{\left( 2x + 3 \right)^\frac{1}{2} + 1}{2\left( \frac{1}{2} + 1 \right)} \right] - \frac{1}{6}\left[ \frac{\left( 2x - 3 \right)^\frac{1}{2} + 1}{2\left( \frac{1}{2} + 1 \right)} \right] + C\]
\[ = \frac{1}{18}\left\{ \left( 2x + 3 \right)^\frac{3}{2} - \left( 2x - 3 \right)^\frac{3}{2} \right\} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.03 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.03 | Q 6 | पृष्ठ २३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×