English

∫ Sin 2 X a Cos 2 X + B Sin 2 X D X - Mathematics

Advertisements
Advertisements

Question

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 

Sum

Solution

\[\text{Let I} = \int\frac{\sin 2x}{a \cos^2 x + b \sin^2 x}dx\]
\[ = \int\frac{\sin 2x}{a\left( 1 - \sin^2 x \right) + b \sin^2 x} dx\]
\[ = \int\frac{\sin 2x}{\left( b - a \right) \sin^2 x + a} dx\]

`  "Putting "     s   "in" ^2 x = t `
\[ \Rightarrow 2\sin x . \cos x = \frac{dt}{dx}\]
\[ \Rightarrow \sin 2x = \frac{dt}{dx}\]
\[ \Rightarrow \text{sin 2x dx }= dt\]
\[ \therefore I = \int\frac{1}{\left( b - a \right)t + a}dt\]
\[ = \frac{1}{\left( b - a \right)} \text{ln }\left| \left( b - a \right)t + a \right| + C \left[ \because \int\frac{1}{ax + b}dx = \frac{1}{a}\text{ln}\left| ax + b \right| + C \right]\]
\[ = \frac{1}{\left( b - a \right)} \text{ln }\left| \left( b - a \right) \sin^2 x + a \right| + C \left[ \because t = \sin^2 x \right]\]
\[ = \frac{1}{\left( b - a \right)} \text{ln }\left| b \sin^2 x + a\left( 1 - \sin^2 x \right) \right| + C\]
\[ = \frac{1}{\left( b - a \right)} \text{ln} \left| b \sin^2 x + a \cos^2 x \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.08 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.08 | Q 19 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \cot^6 x \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x e^x \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×