English

∫ 2 X 4 + 7 X 3 + 6 X 2 X 2 + 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
Sum

Solution

\[\int\left( \frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} \right)dx\]
\[ = \int \frac{x^2 \left( 2 x^2 + 7x + 6 \right)}{x\left( x + 2 \right)}dx\]
\[ = \int\frac{x\left[ 2 x^2 + 4x + 3x + 6 \right]}{x + 2}dx\]
\[ = \int\frac{x\left( 2x\left( x + 2 \right) + 3\left( x + 2 \right) \right)}{\left( x + 2 \right)}dx\]

`= c x ( (2x+3)(x+2)) / (x+2) dx` 


\[ = \int\left( 2 x^2 + 3x \right)dx\]
` = 2   ∫  x^2 dx + 3∫   x    dx`
\[ = 2\left[ \frac{x^3}{3} \right] + 3\left[ \frac{x^2}{2} \right] + C\]
\[ = \frac{2}{3} x^3 + \frac{3}{2} x^2 + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.02 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.02 | Q 19 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

` ∫      tan^5    x   dx `


\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×