English

∫ 1 X 4 + X 2 + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
Sum

Solution

\[\text{ We  have,} \]
\[I = \int \frac{dx}{x^4 + x^2 + 1}\]
\[ = \frac{1}{2}\int \frac{2 \text{ dx }}{x^4 + x^2 + 1}\]
\[ \Rightarrow \frac{1}{2}\int\left( \frac{\left( x^2 + 1 \right) - \left( x^2 - 1 \right)}{x^4 + x^2 + 1} \right)dx\]
\[ \Rightarrow \frac{1}{2}\int\left( \frac{x^2 + 1}{x^4 + x^2 + 1} \right)dx - \frac{1}{2}\int\left( \frac{x^2 - 1}{x^4 + x^2 + 1} \right)dx\]
\[\text{Dividing numerator and denominator by} \text{ x}^2 \]
\[I = \frac{1}{2}\int\left( \frac{1 + \frac{1}{x^2}}{x^2 + 1 + \frac{1}{x^2}} \right)dx - \frac{1}{2}\int\left( \frac{1 - \frac{1}{x^2}}{x^2 + 1 + \frac{1}{x^2}} \right)dx\]
\[ = \frac{1}{2}\int\left( \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2} - 2 + 3} \right)dx - \frac{1}{2}\int\frac{\left( 1 - \frac{1}{x^2} \right)dx}{x^2 + \frac{1}{x^2} + 2 - 1}\]
\[ = \frac{1}{2}\int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{\left( x - \frac{1}{x} \right)^2 + \left( \sqrt{3} \right)^2} - \frac{1}{2}\int\frac{\left( 1 - \frac{1}{x^2} \right)dx}{\left( x + \frac{1}{x} \right)^2 - 1^2}\]
\[\text{ Putting x } - \frac{1}{x} = t\]
\[ \Rightarrow \left( 1 + \frac{1}{x^2} \right)dx = dt\]
\[\text{ Putting x} + \frac{1}{x} = p\]
\[ \Rightarrow \left( 1 - \frac{1}{x^2} \right)dx = dp\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{t^2 + \left( \sqrt{3} \right)^2} - \frac{1}{2}\int\frac{dp}{p^2 - 1^2}\]
\[ = \frac{1}{2} \times \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{t}{\sqrt{3}} \right) - \frac{1}{2} \times \frac{1}{2 \times 1}\text{ log }\left| \frac{p - 1}{p + 1} \right| + C\]
\[ = \frac{1}{2\sqrt{3}} \tan^{- 1} \left( \frac{x - \frac{1}{x}}{\sqrt{3}} \right) - \frac{1}{4}\text{ log } \left| \frac{x + \frac{1}{x} - 1}{x + \frac{1}{x} + 1} \right| + C\]
\[ = \frac{1}{2\sqrt{3}} \tan^{- 1} \left( \frac{x^2 - 1}{x\sqrt{3}} \right) - \frac{1}{4}\text{ log }\left| \frac{x^2 - x + 1}{x^2 + x + 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.31 [Page 190]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.31 | Q 4 | Page 190

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int \cot^6 x \text{ dx }\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int \tan^4 x\ dx\]

\[\int \sec^4 x\ dx\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \log_{10} x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×