Advertisements
Advertisements
Question
\[\int \sec^2 x \cos^2 2x \text{ dx }\]
Sum
Solution
\[\int\left( \sec^2 x \cdot \cos^2 2x \right)dx\]
\[ = \int \sec^2 x \times \left( 2 \cos^2 x - 1 \right)^2 dx\]
\[ = \int \sec^2 x \left[ 4 \cos^4 x - 4 \cos^2 x + 1 \right]dx\]
\[ \Rightarrow \int\left( 4 \cos^2 x - 4 + \sec^2 x \right)dx\]
\[ = 4\int \cos^2 x \text{ dx } + \int \sec^2 x \text{ dx }- 4\int dx\]
\[ \Rightarrow 4\int\left( \frac{1 + \cos 2x}{2} \right)dx + \int \sec^2 x - 4\int dx\]
\[ \Rightarrow 2 \left[ x + \frac{\sin 2x}{2} \right] + \tan x - 4x + C\]
\[ \Rightarrow \sin 2x + \tan x - 2x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
` ∫ sec^6 x tan x dx `
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int \tan^5 x\ dx\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]