Advertisements
Advertisements
Question
Solution
\[\text{ Let I } = \int e^x \left[ \frac{x - 1}{\left( x - 1 \right)^3} \right]dx\]
\[ = \int e^x \left[ \frac{x + 1 - 2}{\left( x + 1 \right)^3} \right]dx\]
\[ = \int e^x \left[ \frac{1}{\left( x - 1 \right)^2} - \frac{2}{\left( x + 1 \right)^3} \right]dx\]
\[\text{ Here}, f(x) = \frac{1}{\left( x + 1 \right)^2}\]
\[ \Rightarrow f'(x) = \frac{- 2}{\left( x + 1 \right)^2}\]
\[\text{ Put e}^x f(x) = t\]
\[\text{ let e}^x \frac{1}{\left( x + 1 \right)^2} = t\]
\[\text{ Diff both sides }\]
\[ e^x \frac{1}{\left( x + 1 \right)^2} + e^x \frac{\left( - 2 \right)}{\left( x + 1 \right)^3} = \frac{dt}{dx}\]
\[ \Rightarrow e^x \left[ \frac{1}{\left( x + 1 \right)^2} - \frac{2}{\left( x + 1 \right)^3} \right]dx = dt\]
\[ \therefore \int e^x \left[ \frac{1}{\left( x + 1 \right)^2} - \frac{2}{\left( x + 1 \right)^3} \right]dx = \int dt\]
\[ = t + C\]
\[ = \frac{e^x}{\left( x + 1 \right)^2} + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int \sec^4 x\ dx\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]