English

∫ ( X Tan − 1 X ) ( 1 + X 2 ) 3 / 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int \frac{x \tan^{- 1} x}{\left( 1 + x^2 \right)^\frac{3}{2}}\text{ dx }\]

\[\text{ Putting x }= \tan \theta\]

\[ \Rightarrow dx = \sec^2  \text{ θ dθ }\]

\[\text{and}\ \theta = \tan^{- 1} x\]

\[ \therefore I = \int \frac{\left( \tan \theta \right) . \theta . \sec^2   \text{ θ dθ }}{\left( 1 + \tan^2 \theta \right)^\frac{3}{2}}\]

\[ = \int \frac{\theta . \tan \theta \sec^2   \text{ θ dθ }}{\left( \sec^2 \theta \right)^\frac{3}{2}}\]

\[ = \int \frac{\theta \tan \theta . \sec^2   \text{ θ dθ }}{\sec^3 \theta}\]

\[ = \int \frac{\theta . \tan \theta}{\sec \theta} d\theta\]

\[ = \int \theta_I . \sin_{II} \text{ θ dθ }\]

\[ = \theta\int\sin \text{ θ dθ }\] - \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int\sin d\theta \right\}d\theta\]

\[ = \theta \left( - \cos \theta \right) - \int1 . \left( - \cos \theta \right) d\theta\]

\[ = - \theta \cos \theta + \sin \theta + C\]

\[ = \frac{- \theta}{\sec \theta} + \frac{1}{cosec   \text{ θ }} + C\]

\[ = \frac{- \theta}{\sqrt{1 + \tan^2 \theta}} + \frac{1}{\sqrt{1 + \cot^2 \theta}} + C\]

\[ = \frac{- \theta}{\sqrt{1 + \tan^2 \theta}} + \frac{\tan \theta}{\sqrt{\tan^2 \theta + 1}} + C\]

\[ = \frac{- \tan^{- 1} x}{\sqrt{1 + x^2}} + \frac{x}{\sqrt{x^2 + 1}} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 47 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{1 - \sin x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int {cosec}^3 x\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×