Let I dx Let I =∫tan−1x dx dx=∫x.tan−1x dxx Let Let x=t dx ⇒12x dx =dt=dxx=2dt dt ∴I=2∫tII.tanI−1(t) dt t dt t dt =2[tan−1t∫ t dt −∫{ddt(tan−1t)∫ t dt }dt]=2[tan−1(t).t22−∫11+t2.t22dt]=tan−1(t).t2−∫t21+t2dt=tan−1(t).t2−∫(1+t2−11+t2)dt=tan−1(t).t2−∫dt+∫dt1+t2=tan−1(t).t2−t+tan−1(t)+C(∵x=t)=tan−1(x).x−x+tan−1x+C=(x+1)tan−1x−x+C
∫{x2+elogx+(e2)x}dx
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
∫ x-3x2+2x-4dx